姬超


一、个人简介

姓名:姬超
学院:诸侯ok1133官网
学位:理学博士
职称:教授、博导



二、学术兼职

1.       美国《Mathematical Reviews》评论员

德国Zentralblatt Math评论员

2.   Mathematical Methods in the Applied Sciences(SCI源期刊)编委

3.   Discrete & Continuous Dynamical System-S(SCI源期刊)编委

4.   Demonstratio Mathematica(SCI源期刊)编委

5.   Boundary Value Problems(SCI源期刊)编委

6.   Mathematical Problems in Engineering(SCI源期刊)编委

7.   Discrete & Continuous Dynamical System-S(SCI源期刊)特刊: Perspectives in Nonlinear Analysis, Guest Editor , Vol. 14, No. 6, 2021.

8.   Mathematical Methods in the Applied Sciences(SCI源期刊)特刊: Nonlinear Analysis and PDEs, dedicated to Professor Xianling Fan on the occasion of his 80th birthday, Guest Editor (with Prof. Wan-Tong Li), 2024.

9.   Discrete & Continuous Dynamical System-S(SCI源期刊)特刊: Issue on new trends in nonlinear PDEs: Dedicated to Professor Vicentiu D. Radulescu, on the occasion of his 65th birthday, Guest Editor (with Prof. Binlin Zhang), Vol. 16, No. 112023.

10.    Electronic Research Archive(SCI源期刊)特刊: Local and Nonlocal Phenomena in Nonlinear Equations, Guest Editor (with Prof. V.D. Radulescu, Dr. Wen Zhang), 2023.

11.    Fixed Point Theory and Algorithms for Sciences and Engineering(ESCI源期刊)编委

三、个人荣誉

2020-2021学年ok1188诸侯快讯官方优秀研究生指导教师

2022-2023学年ok1188诸侯快讯官方优秀研究生指导教师

 

四、主要学习及工作经历

学习经历
2004.09-2009.07     兰州大学数学与统计学院          理学博士

2008.9-2009.3      美国犹他州立大学数学与统计学院  联合培养

 

工作经历
2009.07-2012.08   ok1188诸侯快讯官方                    讲师

2012.09-2022.12    ok1188诸侯快讯官方                    副教授

2014.04-2015.04    瑞典斯德哥尔摩大学数学系        访问学者

2023.01-至今       诸侯ok1133官网            教授

 

 

五、讲授课程及教学成果

  科:《高等数学》、《线性代数》、《非线性泛函分析》、《拓扑学》

研究生:《临界点理论及其应用》

 

六、研究方向

非线性偏微分方程,非线性分析,变分和拓扑方法。

 

七、代表性科研项目

1. 国家自然科学基金面上项目,    2022/01-2025/12,    主持,在研

2.上海市自然科学基金,          2020/07-2023/06,    主持,结题

 

近年来多次获得巴西圣保罗州基金委外籍学者访学项目(2022, 2023),巴西教育部外籍学者访学项目(2023),意大利Istituto Nazionale di Alta Matematica “Francesco Severi” GNAMPA项目(2024)的资助访问巴西圣卡洛斯联邦大学,巴西巴西利亚大学,意大利佩鲁贾大学等。近年来我们也多次在意大利瓦雷泽、罗马尼亚布加勒斯特以及巴西巴西利亚举办的国际会议上作大会报告或分组报告。

 

八、部分代表性研究论文(*指通讯作者)

1.       Pietro d'Avenia, Chao Ji*, Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in R2, J. Anal. Math. (2024), https://doi.org/10.1007/s11854-023-0312-1.

2.       Claudianor O. Alves, Chao Ji*, Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods,Israel J. Math. 259 (2024), no.835–885.

3.       Claudianor O. Alves, Chao Ji*, Multiple normalized solutions to a logarithmic Schrödinger equation via Lusternik-Schnirelmann category, J. Geom. Anal. 34 (2024), Paper No. 198, 29 pp.

4.       Claudianor O. Alves, Chao Ji*,Olimpio H. Miyagaki, Multiplicity of normalized solutions for a nonlinear Schrödinger equation with critical growth in RN, Differential Integral Equations (2024), to appear.

5.       Claudianor O. Alves, Chao Ji*, Existence and concentration of nontrivial solitary waves for a generalized Kadomtsev-Petviashvili equation in R2, J. Differential Equations 368 (2023), 141–172.

6.       Claudianor O. Alves, Chao Ji*, Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well, Sci. China Math., 65 (2022), 1577-1598.

7.       Pietro d'Avenia, Chao Ji*, Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in R2, Int. Math. Res. Not.IMRN (2022), no. 2, pp. 862-897.

8.       Claudianor O. Alves, Chao Ji*,Olimpio H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in RN, Calc. Var. Partial Differential Equations, 61 (2022), 18.

9.       Chao Ji, Vicentiu D. Radulescu*, Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well, J. Differential Equations, 306 (2022), 251-279.

10.    Claudianor O. Alves, Chao Ji*, Normalized solutions for the Schrödinger equations with L2-subcritical growth and different types of potentials, J. Geom. Anal., 32(2022), 165, 25 pp.

11.    Chao Ji, Vicentiu D. Radulescu, Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Israel J. Math.,241 (2021), 465-500.

12.    Chao Ji, Vicentiu D. Radulescu*, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, Calc. Var. Partial Differential Equations,59 (2020), art 115, pp.28.

13.    Claudianor O. Alves, Chao Ji*, Existence and concentration of positive solutions for a logarithmic Schrödinger equation via penalization method, Calc. Var. Partial Differential Equations, 59 (2020), art 21, pp.27.

14.    Chao Ji, Zhi-Qiang Wang and Yuanze Wu, A monotone property of the ground state energy to the scalar field equation and applications, J. London Math. Soc. (2), 100 (2019), 804–824.

15.    Yiwen Ma, Chao Ji*, Existence of multi-bump solutions for the magnetic Schrödinger-Poisson system in R3, J. Geom. Anal., 31 (2021), no. 11, 10886-10914.

16.    Chao Ji, Vicentiu D. Radulescu*, Concentration phenomena for magnetic Kirchhoff equations with critical growth, Discrete Contin. Dyn. Syst., 41 (2021), 5551-5577.

17.    Chao Ji, Vicentiu D. Radulescu*, Multiplicity and concentration of solutions for Kirchhoff equations with magnetic field, Adv. Nonlinear Stud., 21 (2021), no.3, 501-521.

18.    Chao Ji, Vicentiu D. Radulescu*, Multi-bump solutions for quasilinear elliptic equations with variable exponents and critical growth in RN, Commun. Contemp. Math.,23 (2021), no. 5, Paper No. 2050013, 41 pp.

19.    Chao Ji, Vicentiu D. Radulescu*, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in R2, Manuscripta Math.,164 (2021), 509-542.

20.    Claudianor O. Alves, Chao Ji*, Existence of a positive solution for a logarithmic Schrödinger equation with saddle-like potential, Manuscripta Math.,164 (2021), 555-575.

21.    Claudianor O. Alves, Chao Ji*, Multiple positive solutions for a Schrödinger logarithmic equation, Discrete Contin. Dyn. Syst.,40 (2020), 2671-2685.

22.    Chao Ji*, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in R3, Ann. Mat. Pura Appl., (4) 198 (2019), no. 5, 1563–1579.

23.    Chao JiAndrzej SzulkinA logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl.,437(2016), 241-254.

24.    Xianling Fan*, Chao JiExistence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 334(2007), 248-260.

关于本人更多的研究成果请参见:https://www.researchgate.net/profile/Chao_Ji7

 

九、研究生培养

2017:     上海市优秀毕业生 

2018:  马一文 ok1188诸侯快讯官方优秀毕业生和ok1188诸侯快讯官方优秀硕士毕业论文

                  申请到英国Sussex University博士,发表SCI论文一篇

2019:     发表SCI论文一篇

                张勇德 发表SCI论文一篇

2020:    上海市优秀毕业生  

                  ok1188诸侯快讯官方优秀毕业生和ok1188诸侯快讯官方优秀硕士毕业论文

2021:  吕文倩 ok1188诸侯快讯官方优秀毕业生和ok1188诸侯快讯官方优秀硕士毕业论文

 

在读研究生

博士研究生:  宁、丁  瑞、李庆悦

硕士研究生:何镇涛、朱欣杰、陶一凡、盛 

 

十、联络方式

E-mail: jichao@ecust.edu.cn;  jichao2016@gmail.com

Office: 八教705

欢迎有志于非线性偏微分方程、非线性分析方向的同学报考我的研究生。


网页发布时间: 2021-10-15